The Banal Evil of Joe Manchin and the Inadequate Media Response

Why Developed Nations Should Support Mechanisms For Financing Needed Adaptation and Loss and Damages From Climate Harms That Create Climate Change Refugees

 

 

 

I. Introduction

This is the first article in a two-part series that explains why developed countries should support the creation and support of mechanisms under the UNFCCC for financing climate change adaptation in developing countries and compensating for climate change induced losses and damages which create or adversely affect climate refugees. After describing the major focus of recent international negotiations on climate change, the entry will explain why developed nations should support the creation of a financing  mechanism to compensate for loss and damages from harms that have created climate change refugees or adversely affect climate refugees. The article discusses the following topics:

Part 1

II.  Climate Change at Current Atmospheric CO2 Concentrations Is Already Creating Millions of Refugees and Threatens to Cause Many Millions More. 

III. The Recent National Climate Change Policy Preoccupation with Achieving Paris Agreement Warming Limit Goals of As Close as Possible to 1.5 C but no greater than 2.0 C although Very Appropriate has taken Focus off Policy to Prevent and Deal with Refugees.

IV. The Climate Regime Fails to Adequately Deal with Harms and Damages

Part 2

V. Customary International Law On Damages and Compensation

VI. National Responsibility for Breach of the No Harm Rule

VII. The Opportunity to Act Has Long Existed

IX. Proportionate Measures Were Not Taken

XI. Why Developed Nations Should Support Increased Adaptation Funding and a Mechanism for funding Loss and Damages Related to Refugees.

Part 1

II. Climate Change Harms at Current Atmospheric CO2 Concentrations Are  Already Creating Millions of Refugees and Threatening to Cause Many Millions More. 

The most recent report of the Intergovernmental Panel on Climate Change released on March 1, 2022 found:

Human-induced climate change, including more frequent and intense extreme events, has caused widespread adverse impacts and related losses and damages to nature and people, beyond natural climate variability. ….. Vulnerability of ecosystems and people to climate change differs substantially among and within regions (very high confidence), driven by patterns of intersecting socio-economic development, unsustainable ocean and land use, inequity, marginalization, historical and ongoing patterns of inequity such as colonialism, and governance (high confidence). Approximately 3.3 to 3.6 billion people live in contexts that are highly vulnerable to climate change (high confidence). A high proportion of species is vulnerable to climate change (high confidence). Human and ecosystem vulnerability are interdependent (high confidence) (IPCC 6, 2022, Summary for Policy Makers), as global temperatures continue to rise, hundreds of millions of people could struggle against floods, deadly heat waves and water scarcity from severe drought, the report said. Mosquitoes carrying diseases like dengue and malaria will spread to new parts of the globe.  Crop failures could become more widespread, putting families in places like Africa and Asia at far greater risk of hunger and malnutrition. People unable to adapt to the enormous environmental shifts will end up suffering unavoidable loss or fleeing their homes, creating dislocation on a global scale.{IPCC 6, 2022)

Poor nations are far more exposed to climate risks than rich countries. Between 2010 and 2020, droughts, floods and storms killed 15 times as many people in highly vulnerable countries, including those in Africa and Asia, as in the wealthiest countries.(IPCC, 6 2022)

That disparity has fueled a contentious debate: “what the industrialized nations most responsible for greenhouse gas emissions owe developing countries.” Low-income nations want financial help, both to defend against future threats and to compensate for damages they can’t avoid. This issue will be a focus when governments meet for the next United Nations climate summit in Egypt in November (IPCC 6 2022).

To avert the most catastrophic impacts, nations need to quickly and sharply reduce emissions of carbon dioxide, methane and other greenhouse gases that are dangerously heating the planet (IPCC 6, 2022).

While serving as Program Manager for UN Organizations at US EPA during the US Clinton Administration, I was invited in 1997 to participate in war games being conducted by the US Army War College about parts of the world that could raise national security threats triggered by social disruption from climate change caused destabilization. One region the Army War College identified during these war games as being a potential source of global disruption was the drought prone regions of Syria. In 2007, a climate change induced drought began in Syria which lasted to 2010 and created 1.3 million refugees who eventually destabilized large parts of Europe  (Kelly 2015: 1)

The Army War College also during this time identified three countries in central America, Guatemala, Honduras, and El Salvador as vulnerable to climate change from agricultural areas in these countries are at risk to drought.

In recent years, tens of thousands of people have fled Central American countries  because of drought and extreme weather conditions that have made it difficult to grow crops. Yet when refugees from these countries have fled to the US-Mexican border, the US press almost always has failed to connect them to climate change nor the significant US role, along with other high-emitting nations, in creating the climate change impacts which have been making agriculture difficult or forced people to migrate brcause of flooding or water scarcity. This is so despite the fact that the US is the largest national emitter of historical GHG emissions. 

 

Maldives, one of the small island nations threatened by rising seas

This image demonstrates that 1 meter of sea level rise will threaten 15 million in Bangladesh and 1.5 meters endangers 18 million. Sea Level Change in Bangladesh, Center for Science Education (ucar.edu)

Many small island developing states are also particularly vulnerable to rising seas.

NOAA issued a report containing ominous new predictions of expected sea level rise which should increase concern about sea-level caused migrants even if the ice sheet collapse concerns don’t happen . This report predicted 1 foot of sea level rise by 2050 and two feet and by 2100. (NOAA, 2022).

U.S. coastline to see up to a foot of sea level rise by 2050 | National Oceanic and Atmospheric AdministrationThe 2008 Army War College report also warned that extreme weather events sometimes trigger large, unplanned population movements, and violence.

In October 2021, the US White House issued a report on climate change and migration. (US White House, 2021). This White House Report concluded that the climate crisis is reshaping our world, as the Earth’s climate is now changing faster than at any point in the history of modern civilization as defined by changes in average weather conditions. These include changes in temperature precipitation patterns, the frequency and severity of certain weather events, and other features of the climate system. When combined with physical, social, economic, and/or environmental vulnerabilities, climate change can undermine food, water, and economic security. Secondary effects of climate change can include displacement, loss of livelihoods, weakened governments, and in some cases political instability and conflict. (US White House 2021: 4)

The United Nations High Commissioner for Refugees (UNHCR) reported that an average of 21.5 million people were forcibly displaced each year by sudden onset weather-related hazards between 2008 and 2016, and thousands more from slow-onset hazards linked to climate change impacts. Hazards resulting from the increasing intensity and frequency of extreme weather events, such as abnormally heavy rainfall, prolonged droughts, desertification, environmental degradation, sea-level rise and cyclones are already causing an average of more than 20 million people to leave their homes and move to other areas in their countries each year (World Bank, 2018). Policy and programming efforts made today and in coming years will impact estimates of displaced people over the next two to three decades due in large measure to climate change impacts.(UNHCR 2021).

Among other issues related to potential US response to climate change induced migration, the US White House report listed relevant regional considerations in Africa, Asia, Central America. Middle East and North Africa, and Small Island States. (White House 2021: 14 -15).

While working as the Program Manager for United Nations Organizations for US EPA in 1997 while attending a Governing Council meeting of United Nations Environment Program (UNEP) at UNEP headquarters north of Nairobi Kenya, I took some time to visit an area in Kenya about 100 miles North of Nairobi where residents were suffering from drought. This experience made me aware of the horrific conditions that make desperate people leave their homes and run the great risks entailed by abandoning one’s home and country with the hope of finding an alternative place to live and eat in the face of uncertainty.

Many countries in the Sahel region in Africa, (the red area in the following image) are vulnerable to drought and have already created huge numbers of refugees many of whom have destabilized some European countries along with the Syrian refugees .


The UN Commissioner on Human Rights said :

Ninety percent of refugees under UNHCR’s mandate, and 70 percent of people displaced within their home countries by conflict and violence, come from countries on the front lines of the climate emergency.

They are vulnerable not only to extreme weather like floods or cyclones, but also to seeing their livelihoods dry up due to drought and desertification.

From Burkina Faso to Bangladesh, and from Afghanistan to Mozambique, climate change is increasing poverty, instability and human movement; it is fueling tensions and competition over dwindling resources.

(UNHCR, Climate Change is an Emergency for Everyone, Everywhere, 2021)

III. Although the Current Major Policy Preoccupation of Most Nations Has Been on Achieving the Paris Agreement’s Warming Limit Goals of As Close as Possible to 1.5 C but no greater than 2.0 C is Very Appropriate, Unfortunately this has taken Attention off Policies for Responding to Challenges from Swelling Numbers of Climate Refugees.

 The major climate policy preoccupation of the international community has been limiting warming to the 1.5 C to 2.0 C warming limit goals established in the Paris Agreement. This is understandable because warming in excess of these amounts can trigger catastrophic warming capable of leading to mass extinctions such as those that have been experienced at least five times in Earth’s history.

 

Rotary Club of Castro Velley. Climate Change: The Sixth Mass Extinction (castrovalleyrotary.org)

The recent international focus on policies needed to limit warming to no more than 2 C is also warranted because the international community is running out of time to prevent catastrophic warming that becomes much more likely if global temperature rise is more than 2.0 C above pre-industrial levels. The parties to the recent 2022 Glasgow UN COP climate negotiations explicitly reaffirmed in October 2021 the Paris Agreement temperature goal of holding the increase in the global average temperature to well below 2 C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C above pre-industrial levels. (UNFCCC, COP 26, 2021: par 20)

The paper begins by describing climate change harms that threaten the international community with a special focus on harms that are creating millions of climate change refugees. The paper will use the term “refugees” to apply to all climate induced displaced persons although under international law, the term “refugee” does not connote all displaced persons, but only those who flee their nation because of fear of persecution or violence. A “refugee” is defined as a person who has crossed an international border “owing to well-founded fear of being persecuted for reasons of race, religion, nationality, membership of a particular social group or political opinion” (1951 Convention relating to the Status of Refugees). In some contexts, the definition extends to persons fleeing “events seriously disturbing public order.” (1969 OAU Convention 1984 Cartagena Declaration).

Climate change affects people inside a nation’s own borders and typically creates internal displacement before it reaches a level where it displaces people across borders. However, there may be situations where the refugee criteria of the 1951 Convention or the broader refugee criteria of regional refugee law frameworks could apply. People may have a valid claim for refugee status, for example, where the adverse effects of climate change interact with armed conflict and violence.

Climate change harms have created and will continue to adversely affect refugees around the world. These harms include sea level rise, glacial melting, changes in precipitation which cause flooding and drought, famine caused by drought, storm damage from extreme weather events, unbearable heat waves, wildfires, increases in the intensity of tropical storms, increases in tropical diseases, the  degradation of ecological systems including plants and animals on which people and animals depend, and the melting of ice masses which affect water supplies.

The current CO2 atmospheric concentration of approximately 419 ppm is lower than levels that existed during times which GHG levels triggered mass extinctions. In the following chart, the atmospheric CO2 concentrations which likely were responsible for or affected the severity of the extinction events are indicated by the red dots to coincide with notable extinction events. https://skepticalscience.com/co2-higher-in-past.htm

Although current CO2 atmospheric concentrations are lower than levels that triggered catastrophic warming in Earth’s history, there are tipping points in the Earth’s system that if destabilized could dangerously accelerate the rise in atmospheric CO2 concentrations by destabilizing other tipping points and accelerate warming.

(Stockholm Resilience Center)

The destabilization of some tipping points may potentially lead to ominous consequences caused by further destabilization of other tipping points creating a domino effect until atmosphere concentrations are at levels that previously caused mass extinctions. (Business Insider, 2020)

Several of these tipping points are now showing early signs of destabilization making needed reductions even more urgent.

Greenland Ice Sheet

For instance, a report of the US National Academy of Sciences in 2021 concluded the Western Greenland ice sheet is showing signs of tipping. (PNAS, 2021)

 

 

 

The Greenland ice sheet contains enough water to raise global sea levels by over 20 feet and its melting is accelerating. From 1992 to 2018, it lost close to four trillion tons of ice. While its disintegration is not likely to be abrupt, there could come a point beyond which its eventual collapse is irreversible. In fact, a recent study found that the accelerating retreat and thinning of Greenland’s glaciers that began 20 years ago is speeding the ice sheet toward total meltdown. One recent study concluded that glaciers on the island have shrunk so much, that even if global warming were to stop today, the ice sheet would continue shrinking. (Morgan McFall-Johnson, 2020). In other words, eventual complete Greenland melting is now likely beyond the point of no return.

West Antarctic Ice Sheet

The Thwaites Glacier on West Antarctica’s Amundsen Sea has lost a trillion tons of ice since the early 2000s, and some scientists believe it could be headed for an irreversible collapse, which could threaten a large part of the West Antarctic Ice Sheet [WAIS) and raise global sea levels by two feet or more.

Another new study found that if the WAIS melted, it could raise sea levels three feet more than previous projections of 10.5 feet. (Harvard, 2022)

If all the Antarctic and Greenland ice sheets melt, sea level will rise by 186 feet. Englander

 

Atlantic Meridonal Overturning Circulation (AMOC)

https://i0.wp.com/news.climate.columbia.edu/wp-content/uploads/2021/11/AMOC.jpg?w=584&ssl=1

The AMOC is one of the main global ocean currents and is critical to regulating climate. Cold salty water, which is dense and heavy, sinks deep into the ocean in the North Atlantic, and moves along the bottom until it rises to the surface near the equator, usually in the Pacific and Indian Oceans. But as glaciers and ice sheets melt, they add fresh, less dense water to the North Atlantic, which prevents the water from sinking and impedes circulation. This may be why AMOC has slowed 15 percent since the 1950s. A recent study found that the AMOC is in its weakest state in 1,000 years. Moreover, the latest climate models project that continued global warming could weaken the AMOC by 34 to 45 percent by 2100. (Cesar, 2022)

Amazon rainforest

The Amazon rain forest, the world’s largest tropical rain forest, stores 200 billion tons of carbon—equal to about five years of global carbon emissions from the burning of fossil fuels—and is home to millions of species of plants and wildlife. The moisture from the Amazon’s rainfall returns to the atmosphere from the soil through evaporation and from plants through transpiration The Amazon along with Boreal forests which are also degrading are carbon sinks which naturally remove atmospheric carbon. Their demise threaten to seed up warming.

If 20-25 percent of the Amazon were deforested, its tipping point could be crossed, according to one study. (Lovejoy, Nobre, 2018) Fewer trees would mean less evapotranspiration, and without enough rainfall to sustain itself, the Amazon could start to die back. In other words, parts of the rainforest could transition into a savanna, a drier ecosystem characterized by grasslands and few trees. In the process, it would potentially release 90 gigatons of CO2, exacerbating climate change. Crossing this tipping point would also result in the loss of biodiversity and ecosystem services, affect global weather patterns, and threaten the lives of 30 million people, including many indigenous, who depend on the rainforest to survive. One study found that dieback would occur if we reach 3°C of warming. Recent studies show worrisome signs of Amazon degradation. (Lovejoy, Nobre, 2018)

The Amazon is already feeling the effects of climate change, as over the last century, temperatures in the region have increased 1°C to 1.5°C.  The Amazon is experiencing longer and hotter dry seasons that make it more vulnerable to wildfires, reduced evapotranspiration in response to higher levels of CO2, and there are now more drought-tolerant tree species. (Lovejoy, Nobre, 2018)

Scientists are unsure whether the Amazon has a single overall tipping point, or when exactly it might be reached, and whether the ecosystem has some ability to adapt to changing conditions. But fires and drought could cause local changes that spread drying conditions to other regions because of an overall reduction of moisture. Twenty-eight percent of the eastern part of the Amazon is already losing more carbon than it is absorbing due to deforestation. And some climate models predict that by 2035, the Amazon will be a permanent source of carbon. (Lovejoy, Nobre, 2018)

Thawing permafrost

Permafrost is ground that remains frozen for two or more consecutive years and is composed of rock, soil, sediments, and ice. Some permafrost has been frozen for tens or hundreds of thousands of years. It is found in northern hemisphere lands without glaciers, including parts of Siberia, Alaska, northern Canada and Tibet. In the Southern Hemisphere, there is permafrost in parts of Patagonia, Antarctica and the Southern Alps of New Zealand. (Resnick, B., 2019) Fourteen hundred billion tons of carbon are thought to be frozen in the Arctic’s permafrost, which is twice as much carbon as is currently in the atmosphere. But the Arctic is warming two times faster than the rest of the planet—it has already warmed 2°C above pre-industrial levels. As it warms and thaws the permafrost, microbes come out of hibernation and break down the organic carbon in the soil, releasing CO2 and methane, which then trigger even more warming and melting. The 2019 Arctic Report Card from NOAA found that the Arctic’s thawing permafrost could be releasing 300 to 600 million tons of carbon per year into the atmosphere. (NOAA, 2019)

Methane stored in ice-like formations called hydrates are also found in permafrost in ocean sediments. This methane may be released as hydrates are thawed by warming seawater. Scientists recently discovered methane leaking from a giant ancient reservoir of methane below the permafrost of the Laptev Sea in the East Siberian Arctic Ocean.

Scientists don’t know exactly how much carbon could ultimately be released by thawing permafrost or when. According to one report, 2°C of warming could mean the loss of 40 percent of the world’s permafrost. (NOAA, 2019 }

ENSO

ElNinoLaNina

El Niño and La Niña are the warm and cool, naturally occurring weather patterns across the tropical Pacific—the El Niño-Southern Oscillation, or ENSO. Every two to seven years, the pattern alternates, bringing disruptions in temperature and precipitation. El Niño causes impacts around the world, such as more drought in India, Indonesia and Brazil, and flooding in Peru. As the ocean warms, it could push ENSO past a tipping point, which would make El Niño events more severe and frequent and could increase drought in the Amazon.

Under the 1992 UNFCCC treaty, nations agreed that:

Nations have duties to adopt policies to prevent dangerous climate change and to take steps toward stabilization of GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system (UNFCCC,1992: Art 2).

Although nations agreed they had a duty to prevent dangerous climate change in 1992, despite almost two decades of efforts to further define a nation’s responsibility, no progress was made on defining “dangerous” until the 2015 until the 2015 Paris Agreement when nations agreed that they have a duty to:

  •  Holding the increase in the global average temperature to well below
    2°C above pre-industrial levels and pursuing efforts to limit the temperature
    increase to 1.5°C above pre-industrial levels, recognizing that this would
    significantly reduce the risks and impacts of climate change;
    (b) Increasing the ability to adapt to the adverse impacts of climate
    change and foster climate resilience and low greenhouse gas emissions
    development, in a manner that does not threaten food production; and
    (c) Making finance flows consistent with a pathway towards low
    greenhouse gas emissions and climate-resilient development.
    This Agreement will be implemented to reflect equity and the principle of
    common but differentiated responsibilities and respective capabilities, in the light
    of different national circumstances. (UN Paris Agreement, 2015, Art 2).

The world has already exceeded 1.1C warming as of the recently concluded UNFCCC COP26 in Glasgow, Scotland and is on a pathway to exceed 1.8°C by 2100 if all commitments made thus far are achieved thus exceeding the 1.5°C warming limit goal. To limit warming to 2.0 C, developed nations will need to take the requirement that they base  their national emissions reductions target calculations on “equity” seriously. Although in my experience most climate scientists and environmental NGOs have no understanding of how to apply  “equity” to their GHG emissions reduction target calculations . Moreover, without an understanding of reasonable interpretations of “equity,” proponents of climate change strategies are unable to respond effectively to the inevitable predictable false claims of opponents of climate policies about what is fair.

Notice this chart shows the GHG emissions reduction needed for the whole world to have any hope of achieving the Paris Agreement warming limit goal of 2 C is depicted by the top line. You can see if the high emitting nations don’t reduce their GHG emissions to levels required of them by equity, the low emitting developing nations must go to zero immediately if the world has any hope of achieving the 2C warming limit goal. And so developed nations must determine its GHG emissions reduction target by adjusting the emissions reduction amount needed of the entire world by a serious consideration of equity. This means that if the entire world must reach net zero by 2075 for instance, to achieve the 2.0 C warming limit goal, developed nations after taking equity into consideration may need to reduce CO2 emissions by -125% or more  by 2075. Few US environmental NGOs in my experience nor academics engaged in climate issues have made recommendations on the US Nationally Determined Commitments, the term for national reductions under the UNFCCC, after adjusting globally needed emissions reductions on the basis of a reasonable interpretation of “equity.” Although reasonable people may disagree on what equity expressly requires of a nation to reduce its GHG emissions, the Intergovernmental Panel on Climate Change (IPCC) said its 5th Assessment report that despite some ambiguity about what equity means:

There is a basic set of shared ethical premises and precedents that apply to the climate problem that can facilitate impartial reasoning that can help put bounds on plausible interpretations of ‘equity’ in the burden-sharing context. Even in the absence of a formal, globally agreed burden sharing such are important in expectations of what may be reasonably required of different actors (IPCC, 2014, AR5, WGIII, Ch.4. pg 317).

The IPCC went on to say that;

(T)hese equity principles can be understood to comprise four key dimensions: responsibility, capacity, equality, and the right to sustainable development (IPCC, 2014, AR5, WGIII, Ch.4, pg 317).

 

Responsibility is understood to mean historical responsibility for the current problem not emissions levels at any one time.  The above images depict the fact that although China is now a much larger emitter of CO2 in regard to tons per year, {the left image}, the United States is a much larger in historical emitter depicted by the right image.

This image depicts the fact that the US has higher per capita emissions than China thus the US as a matter of equity the US should make larger percentage emissions reductions as a matter of equity.

For the last several decades when proponents of climate action proposed serious greenhouse gas reduction goals and strategies, opponents of climate action frequently have claimed that such action would be unfair to the United States as long as countries such as China don’t do the same or more. Rarely has anyone among US climate activists responded by saying the amount national greenhouse gas emissions at any time is not a valid criteria for determining a nation’s reduction responsibility under the concept of “equity,”

Making matters worse, when respected climate scientists are asked whether the world has enough time to deal with harms of climate change, they usually claim we do if we act aggressively. But this answer is usually in response to the question of whether we have enough time to achieve the Paris Agreement warming limit goal of 2.0 C. The atmospheric concentrations which are already causing refugees are existing concentrations. In this writer’s experience, few climate activists seem to understand that CO2 has features that are different than other air polluting substances that have profound policy implications. CO2 mixes well in the atmosphere and is very long lived. Although approximately 80% of CO2 emissions are removed by carbon sinks in 100 years, some stay in the atmosphere for tens of thousands of years contributing to climate change harms everywhere for a very long time. The following image depicts the reality that atmospheric concentrations of CO2 rise as CO2 emissions rise. The policy implication of this fact is that all CO2 emissions are making the problem worse and just some reductions of emissions levels will not stop ice from melting, dangerous killer storms from occurring or, other effects of the climate system from creating harms and damages to the global system even if  global CO2 emissions are decreasing at rates necessary achieve the 1.5 C and 2.0C warming limit goals.

Notice as GHG emissions from around the world rise, atmospheric concentrations glob rise globally thereby increasing harms everywhere. Therefore the response by some scientists that “we have time” may be slightly misleading although accurate in regard to keeping the world below the 2.0  warming limit goal of the Paris Agreement but not for reducing atmospheric concentrations which are causing loss and damages,

For a discussion of this phenomenon, see Seven Features That Citizens and The Media Need to Understand To Critically Evaluate Their Nation’s Response to Climate Change https://ethicsandclimate.org/2020/08/19/why-getting-nations-to-comply-with-ethical/

The focus of policy discourse on actions necessary to stay within the Paris Agreement’s warming limit goals has resulted in little public attention to the reality that all GHG emissions raise atmospheric CO2 concentrations with increasing harms and damages. Although the international community has acknowledged that the global GHG emissions must reach net zero within the next few decades to achieve the Paris Agreement’s warming limit goals, rarely has the public conversation about climate change recognized that national GHG emissions must reach net zero as soon as possible to reduce the creation of additional harms and damages.

IV. The Climate Regime Fails to Adequately Deal with Financing for Adaptation nor  Harms and Damages that Create or Affect Refugees.

At COP 26 in Glasgow which concluded in November of 2021, all developed nations agreed that  in 2009 to provide $100 billion a year to support adaptation and mitigation needs of developing countries, yet they have failed to deliver event  Therefore, developed nations agreed in Glasgow last year to fully deliver on the USD 100 billion goal and provide more transparency on their adaptation pledges.

Although all nations agreed under the 1992 UNFCCC that they had duties to prevent activities within their jurisdiction from harming others outside their jurisdiction, the international community has not developed a mechanism for operationalizing the “no harm” rule despite pressure from developing countries to do so for many years.

Yet COP 26 in Glasgow has finally put loss and damages on the international negotiating agenda. Although an organization for considering loss and damages called the Santiago network was created at COP 25 in Madrid 2021 to discuss issues relevant to loss and damages, not much was done until Glasgow when nations agreed the international community agreed in the Glasgow decision:

Reiterates the urgency of scaling up action and support, as appropriate, including
finance, technology transfer and capacity-building, for implementing approaches for averting, minimizing and addressing loss and damage associated with the adverse effects of climate change in developing country Parties that are particularly vulnerable to these effects;

Urges developed country Parties, the operating entities of the Financial Mechanism, United Nations entities and intergovernmental organizations and other bilateral and multilateral institutions, including non-governmental organizations and private sources, to provide enhanced and additional support for activities addressing loss and damage associated with the adverse effects of climate change. (Glasgow, COP 26 Decision)

And so, the Glasgow COP put loss and damages expressly on the international climate negotiating agenda. Yet no decision has yet been made to create a mechanism on loss and damages nor on numerous difficult issues that loss and damages considerations will raise.

The second part of this series will be published soon and will deal with the following topics.

V. National Responsibility for Breach of No Harm Rule

VI. The Opportunity to Act Has Long Existed

VII. States Should Have Foreseen Damages That Are Creating Refugees

VIII. Why Developed Nations Should Support Increased Adaptation Funding and Mechanism for Loss and Damages Related to Refugees.

References

Anthony et. al., 2018, 21st-Century Modeled Permafrost Carbon Emissions Accelerated by Abrupt Thaw Beneath Lakes, Nature Communications, https://www.nature.com/articles/s41467-018-05738-9#author-information

Business Insider, 2020, The world could hit a tipping point that causes warming to spiral out of control — a scenario scientists call ‘Hothouse Earth, https://www.businessinsider.com/hothouse-earth-climate-change-tipping-point-2018-8

Brown, D., Breakey, H., Burdon, P., Mackey B., Taylor, P (Brown et al., 2018)  A Four-Step Process for Formulating and Evaluating Legal Commitments Under the Paris AgreementCarbon & Climuate Law Review, Vol 12, (2018) Issue 2, Pg 98 – 108, https://doi.org/10.21552/cclr/2018/2/

Center for Science Education, Sea Level Change in Bangladesh

Ceasar L, et al, 2022, Current Atlantic Meridional Overturning Circulation Weakest in Last Millennium, Nature GeoScience Current Atlantic Meridional Overturning Circulation weakest in last millennium | Nature Geoscience,

Ghebeyesus, T., 2019, Climate Change Is Already Killing Us, How Our Warmer and Wetter Planet Is Getting Sicker and Deadlier by the Day, Foreign Affairs, https://www.foreignaffairs.com/articles/2019-09-23/climate-change-already-killing-us

Glasgow COP 26 Decision, cma2021_L16_adv decision.pdf., cop26_auv_3b_Glasgow_WP (unfccc.int), Nov 13, 2021

Guston, G.,2022, Is the Amazon Approaching a Tipping Point? A New Study Shows the Rainforest Growing Less Resilient, https://insideclimatenews.org/news/07032022/amazon-rainforest-tipping-point-resilience/

Intergovernmental Panel on Climate Change (IPCC, 2014), 5th Assessment Report, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press), _

Intergovernmental Panel on Climate Change, Sixth Assessment,  (IPCC, AR6, Summary for Policy Makers,  2022 https://www.ipcc.ch/report/ar6/wg1/#SPM

Kelly, C, 2015, Climate change in the Fertile Crescent and implications of the recent Syrian drought. https://www.pnas.org/doi/10.1073/pnas.1421533112

Lavell, M. , 2021, By 2050, 200 Million Climate Refugees May Have Fled Their Homes. But International Laws Offer Them Little Protection – Inside Climate News, Inside Climate News,

Leahy, S., 2019   Climate Change Driving Entire Planet To Dangerous Tipping Point https://www.natiTonalgeographic.com/science/2019/11/earth-tipping-point/

Lovejoy, T and C.Nobre, Amazon Tipping Points, Science Tipping Points, Science Advances  https://www.science.org/doi/10.1126/sciadv.aat2340

Morgan McFall-Johnson ,C 2020,  Greenland’s Melting Ice Sheet Has Passed The Point of No Return, Science Alert, https://www.sciencealert.com/greenland-s-melting-ice-sheet-has-passed-the-point-of-no-return-scientists-say

NOAA, 2019, Arctic Report Card, NOAA Arctic Report Card Full Report

NYTimes, 2019, Cyclone Idai Kills at Least 150 in Malawi, Mozambique and Zimbabwe https://www.nytimes.com/2019/03/17/world/africa/cyclone-idai-malawi-mozambique-zimbabwe.html      

Pumphrey, Carolyn Dr., “Global Climate Change National Security Implications” (2008). Monographs. 65. https://press.armywarcollege.edu/monographs/6

PNAS, Boars, Rypdel, 2021,Critical slowing down suggests that the western
Greenland Ice Sheet is close to a tipping point, https://www.pnas.org/doi/pdf/10.1073/pnas.2024192118

Resnick, B, 2019,  Scientists feared unstoppable emissions from melting permafrost. They may have already started, https://www.vox.com/energy-and-environment/2019/12/12/21011445/permafrost-melting-arctic-report-card-noaa

Rotary Club of Castro Valley Climate Change: The Sixth Mass Extinction? | Rotary Club of Castro Valley (castrovalleyrotary.or

Science Daily, 2019, Breaching a ‘carbon threshold’ could lead to mass extinction, https://slideplayer.com/slide/11848341/

UNCHR,2021,  https://www.unhcr.org/en-us/news/stories/202P1/11/618a301d5/climate-change-emergency-everywhere.html2021

United Nations Environment Program.(UNEP,) 2019, Bridge the Gap, https://www.unenvironment.org/resources/bridging-emissions-gap

United Nations Framework Convention on Climate Change (UNFCCC, 1992)

White House, 2021 Report On Climate Migration, Report-on-the-Impact-of-Climate-Change-on-Migration.pdf,

UN Paris Agreement to the United Nations Framework Convention on Climate Change, Dec. 12, 2015, T.I.A.S. No. 16-1104. (UN Paris Agreement, 2015)

World Bank, 2018, Climate Change Could Force Over 140 Million to Migrate Within Countries by 2050: https://www.worldbank.org/en/news/press-release/2018/03/19/climate-change-could-force-over-140-million-to-migrate-within-countries-by-2050-world-bank-report

To subscribe by email see FeedBurner Email Subscription (google.com)

 

Donald A. Brown

Scholar in Residence, Sustainability Ethics and Law

Winner of UNESCO Prize for Excellence in Ethics in Science

Widener University Commonwealth Law School

dabrown57@gmail.com

short bio 

 

 

.

 

 

 

 

 

 

New Evidence That Climate Change Poses a Much Greater Threat to Humanity Than Recently Understood Because the IPCC has been Systematically Underestimating Climate Change Risks: An Ethical Analysis

 

Three papers have been recently published that lead to the conclusion that human-induced climate change poses a much more urgent and serious threat to life on Earth than many have thought who have been relying primarily on the conclusions of the Intergovernmental Panel on Climate Change (IPCC). This paper first reviews these papers and then examines the ethical questions by the issues discussed in these papers.

I. The Three Papers

On July 31, 2018, a paper was published in the Proceedings of the National Academy of Sciences which should create a shiver of fear in all humans everywhere. The paper, Trajectories of  the Earth System in the Anthropocene by Steffen et.al., explains how human-induced warming is rapidly approaching levels that may trigger positi climate feedbacks which could greatly accelerate the warming already plaguing the world by causing record floods, deadly heat waves and droughts, increasing tropical diseases, forest fires, more intense and damaging storms, sea level rise, coral bleaching, and acidification of oceans, all of which are contributing to increasing the number of refugees which are destabilizing governments around the world. This paper explains that, contrary to common assumptions made by many in the international community that positive feedbacks in the climate system that could cause abrupt temperature increases would not likely be triggered if warming could be limited to 20 C above pre-industrial levels, positive feedbacks could be initiated between current temperatures and 20 C. Moreover, once triggered the additional warming caused by these feedbacks could initiate other feedbacks creating a cascade of positive feedbacks, each of which could speed up the warming which is already causing great harm and suffering around the world. The paper claims this mechanism could make life on much of the Earth uninhabitable which could lead to social collapse on the global scale and ultimately to warming increases that human reductions of greenhouse gases (ghg) emissions alone would not prevent until the global system reached a new temperature equilibrium at much higher temperatures than the human race has ever experienced. In other words, cascading positive feedbacks in the climate system could result in humans losing control over preventing disastrous warming.

Another recent paper published in mid-August in Nature Communications by Anthony et. al., 21st-Century Modeled Permafrost Carbon Emissions Accelerated by Abrupt Thaw Beneath Lakes, concludes that models used to predict climate impacts have failed to incorporate abrupt carbon feedback from permafrost decay that recent evidence has revealed is now possible. In fact, the paper claims that early stages of processes that lead to permafrost degradation are already underway, a phenomenon which leads to release of dangerous amounts of methane and CO2. This paper further concludes that carbon emissions from melting permafrost could increase soil carbon emissions by 125–190% compared to gradual thaw alone.

This paper summarizes major conclusions from a third recent paper which analyzes IPCC’s consistent underestimation of climate change impacts. This paper, What Lies Beneath: On the Understatement of Existential Climate Risk, (hereinafter “WLB”), recently published by the Breakthrough Institute, claims both that the risks posed by climate change are far greater than is evident from the conclusions of IPCC and examines why IPCC has frequently underestimated threats from climate change.

The WLB report also further concludes that climate change is now an existential risk to humanity, that is an adverse outcome that could either annihilate intelligent life or permanently and dramatically curtail its potential. (WLB, p.13)

Although the WLB report acknowledges IPCC has done “critical, indispensable work of the highest standard in pulling together a periodic consensus of what must be the most exhaustive scientific investigation in world history” however, the IPCC process suffers from all of the dangers of consensus-building in such a wide-ranging and complex arena. (WLB, p. 5) The report also attributes the overly conservative conclusions of the IPCC to the consensus building nature that IPCC must follow to get governments to approve IPCC final reports and to IPCC’s following scientific norms that condemn speculation. (WLB. p. 5) As a result, the report concludes that much of the climate research on which IPCC has relied has tended to underplay climate risks and as a result, IPCC has exhibited preferences for conservative estimates of climate change impacts. (WLB, p. 5)  This practice the WLB reports labels as “scholarly reticence.” (WLB, p. 5)

This WLB report further claims that climate science has succumbed to the norm followed by most physical sciences to refrain from any speculation that cannot be grounded in empirically determined probability calculations. This epistemic norm, the report claims, is not well-suited to guide predictions about very scientifically complex matters such as earth system dynamics. The report calls this approach the Probability Obsession of science which is not well suited to predict future states of complex systems about matters for which there are no historical antecedents. (WLB, p. 2)

The WLB report also notes that a conservative approach to climate science began to dominate and as a result, the planetary future has become a hostage to national economic self-interest. Thus, the paper claims it became “alarmist” to claim the climate change is an existential threat to life on earth. (WLB, p.4)

The report further notes that although “a fast emergency-scale transition to a post-fossil fuel world is absolutely necessary to address climate change…. yet this is excluded from consideration by policymakers because it is considered to be too disruptive.” And so the paper claims “we have a policy failure of epic proportions.”  (WLB, p. 4)

The WLB report further notes that although it has widely been reported that if the ghg emissions reductions commitments or Nationally Determined Commitments (NDCs)  made by governments so far under the Paris Agreement are complied with, the Earth’s temperature is expected to rise to  3.40 C by 2100 without taking into account “long-term” carbon cycle feedbacks. (WLB, p.15) Yet if the positive feedbacks are fully considered, the temperature path defined by the NDCs could result in around 5° C of warming by 2100 according to a MIT study. (WLB, p.13) Yet, the report claims that even if warming reaches 3° C, most of Bangladesh and Florida would drown, while major coastal cities – Shanghai, Legos, Mumbai – would be swamped likely creating larger flows of climate refugees. Most regions of the world would see a significant drop in food production and an increasing number of extreme weather events, whether heat waves, floods or storms. (WLB, p.13)

The WLB report concludes warming of 4°C or more could reduce the global human population by 80% or 90%, and the World Bank reports “there is no certainty that adaptation to a 4°C temperature rise would be possible.” Quoting Professor Kevin Anderson, the report claims a 4°C future “is incompatible with an organized global community and is likely to be beyond adaptation by the majority of people.” (WLB, p. 14)

The WLB report also claims that the often-quoted prediction of likely temperature increases if current NDCs are complied with of approximately 3° C rise does not take into account the considerable risk that self-reinforcing feedback loops could be triggered when certain thresholds are reached leading to an ever-increasing rise in temperature. These potential thresholds include the melting of the Arctic permafrost releasing methane into the atmosphere, forest dieback releasing carbon currently stored in the Amazon and boreal forests, with the melting of polar ice caps that would no longer reflect the light and heat from the sun. (WLB, p. 14)

The report cites a recent study by the European Commission’s Joint Research Center found that if global temperature rose to 4° C that extreme heat waves with “apparent temperatures” peeking over 550 C (1310 F) will begin to regularly affect many densely populated parts of the world, forcing much activity in the modern industrial world to stop. (WLB, p.14)

The paper claims that one study found that even a 2° C warming “would double the land area subject to deadly heat and expose 48% of the population to deadly heat.” (WLB, p.14)

According to the WLB report, a 4° C warming by 2100 would subject 47% of the land area and almost 74% of the world population to deadly heat which could pose existential risks to humans and mammals alike unless massive adaptation measures are implemented. (WLB, p.14)

The WLB paper also explains how IPCC’s understatements of likely climate change impacts affect what is generally claimed among climate policy-makers about elements of climate science including climate models, climate tipping points, climate sensitivity, carbon budgets, permafrost and carbon cycles, arctic sea ice, polar ice-mass loss, and sea-level rise. The following summarizes some of the main paper’s conclusions on these matters, although we recommend that interested parties read the WLB’s full description of these issues. The full paper also should be consulted for footnote sources of the following conclusions.

Climate Models

Climate modeling is at the core of the work by IPCC, and in developing future emission and warming scenarios a 2007 report by the US Center for Strategic and International Studies Center for New American Security recognized the that: “Recent observations indicate the projections from climate models have been too conservative,” and  “the effects of climate change are unfolding faster and more dramatically than expected,” and, “multiple lines of evidence support the position that the 2007 IPCC reports’ projections of impacts are systematically biased low.” (WLB, p.18) For instance, the paper concludes:

The models used to project future warming either omit or do not account for uncertainty in potentially important positive feedbacks that could amplify warming (e.g., release of greenhouse gases from thawing permafrost, reduced ocean and terrestrial CO2 removal from the atmosphere, and there is some evidence that such feedbacks may already be occurring in response to the present warming trend. Hence, climate models may underestimate the degree of warming from a given amount of greenhouse gas emitted into the atmosphere by human activities alone. Additionally, recent observations of climate system responses to warming (e.g. changes in global ice cover, sea level rise, tropical storm activity) suggest that IPCC models underestimate the responsiveness of some aspects of the climate system to a given amount of warming. (WLB, p.18)

Climate models simply omit emissions from warming permafrost, but we know that is the wrong answer because this tacitly assumes that these emissions are zero and we know that’s not right. (WLB, p.18)

The WLB report characterizes IPCC reports as presenting “detailed, quantified (numerical) modeling results-such as feedbacks that the models account for in a descriptive non-quantified form. Sea-levels, polar ice sheets, and some carbon-cycle are three examples. Because policymakers and the media are often drawn to the headline numbers, this approach results in less attention being given to the most devastating, high-end, non-linear and difficult to quantify outcomes.” (WLB, p. 19).

The WLB report concludes about this tendency: “The emphasis on consensus in IPCC reports has put the spotlight on expected outcomes which then become anchored via numerical estimates in the minds of policymakers.” (WLB, p. 19)

The WLB report also notes that one of the problems with IPCC is the strong desire to rely on physical models. (WLB, p. 20)

Tipping Points

A tipping point may be understood as the passing of a critical threshold in the earth climate systems component – such as major ocean and atmospheric circulation patterns, the polar ice sheet, and the terrestrial and ocean carbon stores – which produces a steep change in the system. (WLB, p. 21) Progress toward a tipping point is often driven by positive feedbacks, in which a change in the component leads to further changes that eventually “feedback” onto the original component to amplify the effect. A classic case is global warming is the ice-albedo feedback, or decreases in the area of polar ice change surface reflexivity, trapping more heat, producing further sea ice loss. (WLB, p. 21)

In some cases, passing one threshold will trigger further threshold events, for example, where substantial greenhouse gas releases from polar permafrost carbon stores increase warming, releasing even more permafrost carbon in a positive feedback, but also pushing other systems, such as polar ice sheets past their threshold point. (WLB, p. 21)

In a period of rapid warming, most major tipping points, once crossed are irreversible in human time frames, principally due to the longevity of atmospheric CO2 (a thousand years). (WLB, p. 21)

Climate models are not yet good at dealing with tipping points. (WLB, p.21) This is partly due to the nature of tipping points, where particularly complex confluence of factors abruptly change the climate system characteristics and drive it into a different state. (WLB, p.21) To model this, all the contributing factors and their forces have to be well identified, as well as their particular interactions, plus the interactions between tipping points. (WLB,  p.21)  Some researchers say that “complex, nonlinear systems typically shift between alternative states in an abrupt, rather than the smooth, changes, a challenge that the climate models have not yet been able to adequately meet. (WLB, p. 21)

Risks associated with tipping points increase disproportionately as temperature increases from 1° C to 2° C and become high above 3° C. Yet political negotiations have consistently disregarded the high-end scenarios that could lead to abrupt or irreversible climate change. (WLB, p. 21)

IPCC has published few projections regarding tipping-point thresholds, nor emphasized the importance of building robust risk-management assessments of them in absence of adequate quantitative data. (WLB, p. 210)

The world is currently completely unprepared to envision and even less deal with the consequences of catastrophic climate change. (WLB, p. 21)

Climate Sensitivity

Climate sensitivity is the amount by which the global average temperature will rise due to a doubling of atmospheric greenhouse gas levels, at equilibrium. IPCC reports a focus on what is generally called equilibrium climate sensitivity (ECS). The 2007 IPCC report gave a best estimate of climate sensitivity of 3° C and said it is likely to be in the range 2° C to 4.5° C. (WLB, p. 22)

The 2014 IPCC report says that “no best estimate for equilibrium climate sensitivity can now be given, because of lack of agreement on values across lines of evidence and studies” and only gives a range of 1.5° C to 4.5° C. (WLB, p. 22)

The IPCC reports fail to mention that the ECS measure omits key “long-term” feedbacks that a rise in the planet’s temperature can trigger. (WLB, p. 22) These include the permafrost feedback, other changes in the terrestrial carbon cycle, a decrease in the ocean’s carbon-sink efficiency, and the melting of polar ice sheets creating a cold ocean-surface layer underneath that accelerates the melting of ice shelves and hastens the rate of ice-mass loss. (WLB, p. 22)

There is a wide range of literature that suggests that climate sensitivity which includes these feeedbacks-known as Earth System Sensitivity (ESS), is 4-6 0 C. (WLB, p. 22).

Long-term feedbacks have already begun to appear on short time frames, climate-carbon cycle coupling is expected to add carbon to the atmosphere as the climate warms, although the magnitude of feedback is uncertain. (WLB, p. 22)

Conclusions about climate sensitivity should take into account that:

  1. Biogeochemical feedbacks (such as less efficient land-ocean sinks, including permafrost loss) effectively increases carbon emissions to 2100 by about 20% and can enhance warming by up to 0.5°C, compared to the baseline scenario. (WLB, p. 23)
  2. Warming has been projected to increase methane emissions from wetlands by 0 – 100% compared with present-day wetland methane emissions. A 50% increase in wetland methane emissions by 2100 is expected in response to high-end warming of 4.1 – 5°C which could add at least another 0.5°C warming. (WLB, p. 23)
  3. It is important to use high-end climate sensitivity because some studies have suggested the climate models have underestimated three major positive climate feedbacks: positive ice albedo feedback from the retreat of Arctic sea ice; positive cloud albedo feedbacks from retreating storm track clouds in mid-latitudes, and positive albedo feedback by the next phase (water and ice) clouds. When these are taken into account the ECS is more than 40% higher than the IPCC mid-figure, at 4.5 to 4.7° C. (WLB, p. 23)

Some recent research concludes that climate sensitivity is higher in warmer, interglacial periods (such as present) and lower in colder glacial periods. Based on a study of glacial cycles and temperatures over the last 100, 000 years one study concludes that in warmer periods climate sensitivity is 4.88 0 C. (WLB, p. 23) The higher figure would mean that an atmospheric concentration 450 ppm CO2, a figure that current trends will reach in 5 years, would be around 30 C in rather than the 20 C number bandied about in policy making circles. (WLB, p. 23)

Carbon Budgets

A carbon budget is the estimate of the total future human-caused ghg emissions in tons of CO2 or CO2 equivalent, that would be consistent with limiting warming to a specific figure, such as

1.5 0 C or 20 C with a given risk of exceeding the target such as 50%, 33%, or a 10% chance. (WLB, p. 24)

Carbon budgets are usually based on mid-term climate sensitivity numbers of around 30 C. (WLB, p. 22)

Yet there are reasons to believe climate sensitivity is closer to 4C. In fact, as we have seen, climate sensitivity may be between 4-60 C. (WLB, p. 22)

Carbon budgets are routinely proposed that have a substantial and unacceptable risk of exceeding specified targets and hence entail large and unmanageable risks of failure., (WLB, p. 24)

Research in 2017 the compared role climate models used by IPCC with models that are “observationally informed” produce 15% more warming by 2100 than IPCC claims and therefore supports the conclusion that carbon budgets should be reduced by 15% for the 20C target. (WLB, p. 24)

The IPCC reports fail to say that once projected emissions from future food production and deforestation are taken into account there is no carbon budget for fossil-fuel emissions for a 20C target. (WLB, p. 24).

There are also problems with carbon budgets which incorporate “overshoot” scenarios, in which warming exceeds the target before being cooled by carbon drawdown. (WLB, p.24)  Pam Pearson, Dir. of International Cryo-sphere Climate Initiative, said that most cryo-sphere thresholds are determined by peak temperatures, and the length of time spent at the peak warning rather than “later decreasing temperatures after the peak are largely irrelevant, especially with higher temperatures and longer duration peaks.” Thus “overshoot scenarios” which are now becoming the norm in policymaking hold much greater risks. (WLB, p. 24)

Permafrost and the Carbon Cycle

The failure to adequately consider long-term feedbacks in IPCC models, and hence in projections of future warming, lies at the heart of the problem with the IPCC reporting process. (IPCC, p.25) Over century time-scales, amplifying feedbacks may ultimately contribute 28-68% of total warming, yet they comprise only 1-7% of current warming. (WLB, p. 25)

The land sink (storage capacity) for CO2 appears much smaller than is currently factored into some climate models. Thus future patterns of warming may be distinctly different from past patterns making it difficult to predict future warming by relying on past observations. (WLB, p. 25)

Soil Carbon. A 2016 study concluded that a soil carbon cycle feedback “has not been incorporated into computer models used to project future climate change, raising the possibility that such models are underestimating the amount of warming that is likely to occur. (WLB, p. 24) The projected loss of soil carbon from climate change is a potentially large but highly uncertain feedback to warming, however, there is likely to be strong carbon-climate feedbacks from colder northern soils. (WLB, p.24)

Forests. At the at the moment about one-third of human-caused CO2 emissions are absorbed by trees and other plants. But rapid climate warming and unusual rainfall patterns are jeopardizing many of the world’s trees, due to more frequent droughts, pest outbreaks, and fires. (WLB, p. 25) This is starting to have profound effects on the Earth’s carbon cycle. (WLB, p. 25)  In 2009 researchers found that 2° C of warming could cut in half the carbon sink of tropical rainforests. Some tropical forests – in the Congo and Southeast Asia – have already shifted to a net carbon source. The tropics are now a net carbon source with losses owing to deforestation and reductions in carbon density within standing forests being double that of gains resulting from forest growth. Other work has projected a long-term, self-reinforcing carbon feedback from mid-latitude forests to the climate system as the world warms. (WLB, p. 25)

There has been an observed decline in the Amazon carbon sink.  Negative synergies between deforestation, climate change, and widespread use of fire indicate a tipping point for the Amazon system to flip to non-forest ecosystems in eastern, southern, and central Amazonia at 20 – 25% deforestation. Researchers say that severe droughts of 2005, 2010 and 2015-16 could well represent the first flickers of this ecological tipping point and say the whole system is oscillating. (WLB, p.25)

Permafrost. The world’s permafrost holds 1.5 trillion tons of frozen carbon, more than twice the amount of carbon in the atmosphere. On land it covers an area of 15,000,000 km². The Arctic is warming faster than anywhere on earth, and some permafrost degradation is already occurring. Large-scale tundra wildfires in 2012 added to the concern, as have localized methane outbursts. (WLB, p. 25)

The 2007 IPCC assessment on permafrost did not venture beyond saying “changes in snow ice and frozen ground have with high confidence increase the number and size of glacial lakes, increased ground instability in mountain and other permafrost regions and led to changes in some Arctic and in Antarctic ecosystems. It reported with high confidence that methane emissions from tundra and permafrost have accelerated in the past two decades and are likely to accelerate further. It offered no projections regarding permafrost melts. (WLB, p.25).

The effect of the permafrost’s carbon feedback has not been included in the IPCC scenarios including the 2014 report. (WLB, p. 26). This is despite clear evidence that “the permafrost carbon feedback would change the Arctic from a carbon sink to a source after the mid-2020s and is strong enough to cancel 42 – 88% of the total global land sink. (WLB, p. 26)

In 2012, researchers found that, for the 2100 median forecasts, there would be a 0.23 – 0.27°C of extra warming due to permafrost feedbacks. Some researchers consider that 1.5°C appears to be something of a “tipping point” for extensive permafrost thaw. (WLB, p.26)

A 2014 study estimated that up to 205 billion tonnes equivalent of CO2 could be released due to melting permafrost, This would cause up to 0.5° C extra warming for the high mission scenario and up to 0.15° C of extra warming for the 2° C scenario. The authors say that; “climate projections in the IPCC Fifth Assessment report, and any emissions targets based on these projections, do not adequately account for emissions from thawing permafrost and the effect of the permafrost carbon feedback on global climate. (WLB, p.26)

Recently attention has turned to the question of the stability of large methane hydrate stores below the ocean floor on the shallow East Siberian Arctic shelf. (Methane hydrates are cage-like lattices of ice within which methane molecules are trapped). (WLB, p. 26)

These stores are protected from the warmer ocean temperatures above by a layer of frozen sub-sea permafrost. The concern is that warmer water could create taliks (areas of unfrozen permafrost) through which large-scale methane emissions from the hydrates could escape into the water column above and into the atmosphere. (WLB, p. 26)

A deceptively optimistic picture is painted when the potential impacts from the degradation of permafrost and methane hydrates are underplayed. (WLB, p. 26)

Arctic Sea-Ice

IPCC has consistently underestimated the rate of Arctic sea ice melt. (WLB, p.27)

Arctic sea ice is thinning faster than every IPCC climate projection, tipping points have been crossed for sea ice free summer conditions, and today scientists say an ice-free Arctic summer could be just years away, not many decades. (WLB, p. 27)

The loss of sea ice reduces the reflectivity of the planet and adds to warming but this feedback is not fully incorporated into models in circumstances where the rate of sea-ice loss is more rapid than expected in the models, as is occurring now. (WLB, p.27) To keep global temperature increase below 20 C, global CO2 emissions would need to reach zero 5-15 years earlier and the carbon budget would need to be reduced by 20-51% to offset this additional source of warming. (WLB, p. 27)

Because climate models are missing key real-world interactions and generally have been poor at dealing with the rate of Arctic sea ice retreat, expert elicitation’s play a role in considering whether the Arctic has passed a very significant and dangerous tipping point. But the IPCC has done none of this. (WLB, p.27)

Polar Ice-Mass Loss

2001 IPCC report said little change in Greenland and Antarctic ice sheet is expected over the next 50-100 years.  (WLB, p. 28)

Greenland Ice Sheet

The 2007 IPCC report said there were “uncertainties in the full effects of ice sheet flow” and a suggestion that “partial loss of ice sheet on polar land could imply meters of sea-level rise….Such changes are projected to occur over millennial time scales.” The reality is very different.” (WLB, p. 28)

IPCC said in 2007 that current models suggest virtually complete elimination of the Greenland ice sheet and a resulting contribution to sea-level rise of about 7 meters if global warming were sustained for millennia in excess of 1.9 to 4.60 C relative to pre-industrial values. (WLB, p. 28) This was despite that two 2006 studies found that the Greenland ice cap “may be melting three times faster than indicated by previous measurements, warning that we are close to being close to being committed to a collapse of the Greenland ice cap and reports that rising Arctic regional temperatures are already at “ the threshold beyond which glaciologists think the [Greenland] ice sheet may be doomed.” (WLB, p. 28)

In 2012 then NASA climate science chief James Hansen told Bloomberg that: “our greatest concern is that the loss of Arctic sea ice creates a great threat of passing over passing two other tipping points – the potential instability of the Greenland Ice Sheet and methane hydrates…These latter two tipping points would have consequences that are practically irreversible on time scales of relevance to humanity.’ On this very grave threat, IPCC is mute. (WLB, p. 29)

Antarctic Ice Sheet

The 2007 IPCC assessment proffered: “Current global model studies project that the Antarctic ice sheet will remain too cold for widespread surface melting and gain mass due to increased snowfall.” (WLB, p. 29) However, the net loss of ice mass could occur if dynamical ice discharge dominates the ice sheet mass balance. Reality and new research would soon undermine this one-sided reliance by IPCC on models with poor cryosphere performance. (WLB, p. 29)

By the 2014 IPCC assessment, the story was: “Based on current understanding from observations, physical understanding, and modeling, only the collapse of the marine-based sectors of the Antarctic ice sheet, if initiated could cause global mean sea level to be substantially above the likely range during the 21rst Century.” (WLB, p. 29) There is medium confidence that the additional contribution would not exceed several tenths of a meter of sea-level rise during the 21rst Century. And “abrupt and irreversible ice loss from the Antarctic is sheet is possible, but current evidence and understanding is insufficient to make a quantitative assessment.” This was another blunder. Observations of accelerating ice mass in West Antarctic were well established by this time. (WLB, p. 29) It is likely that the Amundsen Sea sector of the West Antarctic ice sheet has already been destabilized. (WLB, p. 29) Ice retreat is unstoppable for current conditions, and no acceleration in climate change is necessary to trigger the collapse of the rest of the Antarctic Ice Sheet, which comes with a 3-5 meter sea level rise. (WLB, p. 29), Such an event would displace millions of people worldwide. (WLB, p. 29)

In 2016, another significant study concluded that: “Antarctica has the potential to contribute more than a meter of sea-level rise by 2100 and more than 15 meters by 2500.” Compare this to the IPCC report, just a year earlier, that Antarctica’s contribution to sea levels “ would not exceed several tenths of a meter…during this century. ” (WLB, p. 29) As well, partial deglaciation of the East Antarctic ice sheet is likely for the current level of atmospheric CO2 contributing ten meters or more of sea-level rise in the longer run, and five meters in the first 200 years. (WLB, p. 29)

A 2018 study showed that ocean-driven melting has caused rates of ice-loss from West Antarctica to triple from 53 + or – 29 billion to 159 + or – 26 billion tons per year from 1992 to 2017. (WLB, p. 29) Forty percent of the total mass loss over that period has occurred in the last and five years, suggesting a recent and significant acceleration in the loss rate. (WLB, p. 29)

Over the same period, ice-shelf collapse had increased the rate of ice loss from the Antarctic Peninsula almost five-fold from 7 + or – 13 billion to 33 + or- 16 billion tonnes per year. (WLB, p. 29)

Sea Level Rise

In the 2001 assessment report, the IPCC projected a sea-level rise of 2 millimeters per year. By 2007, the researchers found that the range of the 2001 predictions were lower than the actual rise. Satellite data had shown that sea levels had risen by an average of 3.3 millimeters per year between 1993 and 2006. (WLB, p. 30) IPCC did not use this data to revise its projections. (WLB, p. 30) James Hansen warned of “scientific reticence” in regard to ice sheet stability and sea-level rise. (WLB, p. 30) In 2008, the US Geological Survey warned that sea-level rise could top 1.5 meters by the end of the century. And by the end of 2009, various studies offered drastically higher projections than IPCC. (WLB, p. 30) The Australian government identified research that estimated sea level rise range from 0.5 to 2.0 meters by 2100. (WLB, p. 30) Yet in 2014, IPCC reported a smaller figure (0.55 meters compared to 0.59 meters in 2007) despite mounting evidence of polar ice-mass loss. (WLB, p. 30) Noting inconsistent evidence, IPCC said that the probability of specific levels above the likely range cannot be evaluated. (WLB, p. 30)

An NOAA sea level report in August of 2017 recommends a revised worst-case sea level scenario of 2.5 meters by 2100, 5.5 meters by 2150 2150, and 9.7 meters by 2200. (WLB, p. 31)

Today the discussion among experts is for sea-level rise in this century of at least one meter, and perhaps in excess of two meters. (WLB, p. 31)

Goals Abandoned

The WLB report claims that the warming levels already reached at approximately 1.10 C are already “dangerous” and that future warming would need to be limited to 1.20 C to save the Great Barrier Reef. (WLB. p. 37) Therefore, the WLB report concludes that the UNFCCC process has already abandoned the goals of the UNFCCC of “preventing dangerous interference with the climate system.” The report also argues that other key goals of the UNFCCC including that “food production is not threatened’’ and “achieving reductions in a time frame sufficient to allow ecosystems to adapt naturally to climate change” have been abandoned for all practical purposes.”

Conclusion-Ethical Issues Raised by IPCC’s Consistent Underestimation of Climate Change Impacts.

A. Failure to Apply a Precautionary Science

As we have seen, the “What Lies Beneath” Report attributes IPCC’s consistent underestimation of climate change impacts to both the consensus process that IPCC follows in which governments must approve aspects of final IPCC reports and to IPCC’s following norms often followed by scientists which eschew making any claims that cannot be supported by empirically tested observations.

As we have claimed before in Ethicsandclimate.org, there is a potential conflict between IPCC’s mission to synthesize the peer-reviewed climate change scientific literature, which normally requires adequate levels of scientific proof before drawing conclusions, and the precautionary principle stated in article 3 of the United Nations Framework Convention on Climate Change (UNFCCC), which requires governments to act despite scientific uncertainties. A precautionary science would identify all scientifically plausible impacts, not only those impacts that can be identified with high levels of scientific certainty or impacts about which quantitative probability statements derived from empirical observations can be stated.  If the precautionary principle is to be taken seriously then decision-makers should be informed about all potentially dangerous impacts even if quantitative probability statements about these impacts can’t be derived from observations of how a physical system works.  Since the UNFCCC expressly adopted the precautionary principle, a strong case can be made that IPCC should identify all scientifically plausible impacts. If it were to do this, IPCC should, of course, be clear that some impacts are less certain than others.

Identifying all scientifically plausible climate impacts is also required as a matter of ethics once there is a reasonable basis for concluding that certain human behavior is dangerous to others.

Who should have the burden of proof and how much proof should be required to satisfy the burden of proof in the face of scientific uncertainty about dangerous behavior are fundamentally ethical questions, not ‘value-neutral’ scientific matters, yet scientists are rarely trained in ethical reasoning and very rarely spot the ethical issues raised by decisions about dangerous human behavior that must be made in the face of scientific uncertainty.  Given that the potential harms from climate change include an existential threat to life on Earth, as a matter of ethics, those who claim that scientific uncertainty is justification for not taking strong action to reduce the threat of climate change should have the burden of proof of demonstrating with very high levels of proof that ghg emissions levels are safe.

Ethics would require higher levels of proof of those who are engaged in dangerous behavior to prove their behavior is safe in proportion to how potentially dangerous the behavior is especially for harms to others who have not consented to be harmed and for behaviors that become more dangerous the longer one waits to reduce the uncertainty. Given that climate change actually threatens life on Earth including billions of people who have not consented to put at risk, and given that waiting to reduce ghg emissions makes the problem more threatening, ethics would shift the burden of proof to those who are most responsible for raising ghg emissions to prove with very high levels of proof that human emissions of ghg are safe even if there is some uncertainty about the amount of warming that different levels of ghg emissions will cause. For this reason, the problem created by IPCC’s underestimation of climate change impacts may not be exclusively the fault of IPCC.  The problem may also be the fault of policymakers who fail to respond to the enormous potential harms entailed by human-induced warming by demanding that opponents of climate change policies shoulder the burden of proof by demonstrating with high levels of proof that ghg emissions will not cause serious harms.

This website includes many articles which explain why policymakers and citizens have a strong duty to reduce ghg emissions in the face of some scientific uncertainty about climate change impacts. See, for example:

1. The Ethical Duty to Reduce Greenhouse Gas Emissions the face of Scientific Uncertainty;

2. On Confusing Two Roles of Science and Their Relation to Ethics.

Policymakers have a vital need for scientists to explain all scientifically plausible harms that may result from human activities even if the magnitude and creation of potential harms are uncertain. In fulfilling these responsibilities, scientists may not ignore potential harms because they are unable to determine probabilities about the likelihood of their occurrence based on empirical observations. Yet because scientists often follow the epistemic norms of their science when engaged in scientific research which usually require adequate levels of proof before making causal claims, policymakers need to be clear when interacting with scientists that their policymaking responsibilities require that they, the policymakers, protect citizens from all plausible harms.  Therefore policymakers need scientists to identify all scientifically plausible harms. Because IPCC’s mission is to synthesize the existing peer-reviewed climate science, which very likely does not include scientific conclusions about plausible harms partly based on speculation, IPCC cannot fulfill the role of science that policymakers need when policymakers are seeking to protect citizens from all plausible harms, namely to inform humanity about all plausible climate change impacts. Thus, there is a basic conflict between IPCC’s mission of synthesizing peer-reviewed climate change science and providing policy-makers with information about all scientifically plausible climate change impacts.

This need of policy-makers to understand all plausible harms creates an enormous challenge for mainstream scientific institutions which usually rely on peer-review in which scientists normally review scientific claims by comparing claims to empirically tested observations which are the ground of the scientific enterprise. Yet, as Hans Jonas explained in The Imperative of Responsibility, In Search of an Ethics in a Technological Age, the power of modern technology to create catastrophic harms such as those harms now foreseeable from human-induced climate change, ethics requires that policy-makers approach these matters with a “heuristics of fear,” replacing the former “projections of hope” that traditionally guided policy (Jonas, 1984, p.x), Yet, mainstream science is often uncomfortable with conclusions not grounded in scientific observations. If this is so, ethics requires that IPCC’s mandate be amended to synthesize scientifically plausible conclusions about climate change outcomes.

B. The Ethical Bankruptcy of Arguments Which Demand High Levels of Certainty Before Taking Action to Reduce the Threat of Climate Change

The WLB report also claims that quoting a 2014 article in the Guardian increasing evidence ‘that policy summaries on climate impacts and mitigation by the IPCC were significantly “diluted under political pressure from some of the world’s biggest greenhouse gas emitters, including Saudi Arabia, China, Brazil, and the United States.” (WLB. p. 34)

The WLB report consistently argues that the remedy to IPCC’s tendency to underestimate climate impacts is to allow or require more speculation about uncertain but plausible climate impacts. However, those governments that seek to restrict discussion of all impacts to those that have been proven with relatively high levels of proof would likely argue that speculation could lead to an overstatement of climate impacts. Yet following a precautionary science that identifies all plausible climate change impacts including those that have been based on speculation can guard against overstating the seriousness of climate impacts by allowing those who claim that the plausible impacts have been overstated to provide reasons for their claims so that policymakers can judge whether some of the plausible but not fully proven impacts are arbitrary or without any plausible scientific support. This would place the burden of proving harm appropriately, as a matter of ethics, on the parties that seek to justify continuing dangerous behavior.

Nations which have demanded high levels of proof before reducing their contributions to climate change have failed to abide by their ethical and legal duties to not harm others and not abide by the ” precautionary principle” which they agreed to UNFCCC and the Paris Agreement.

C. Ethical Problems with Economics Arguments Against Climate Change Policies

The WLB report also claims that some governments have advocated policies that would not be sufficient to achieve the goals of the UNFCCC to prevent dangerous climate change because they thought policies that achieve safer levels of warming ‘were too economically disruptive.” (WLB, p. 39). This report claims that in so doing,” policymakers are complicit today in destroying the very conditions which make life possible.” (WLB, p. 39) Further, the WLB report claims “There is no greater crime against humanity.” (WLB, p. 39)

An ethical analysis of those nations that refuse to adopt policies that may be necessary to prevent catastrophic harm on the basis of their economic interest would also strongly condemn these nations as deeply morally bankrupt.

References:

Anthony et. al., 2018, 21st-Century Modeled Permafrost Carbon Emissions Accelerated by Abrupt Thaw Beneath Lakes, Nature Communications ,https://www.nature.com/articles/s41467-018-05738-9#author-information

Breakthrough Institute, 2018, What Lies Beneath, On the Understatement of Existential Climate Risk, https://docs.wixstatic.com/ugd/148cb0_a0d7c18a1bf64e698a9c8c8f18a42889.pdf

Jonas, H, 1984, The Imperative of Responsibility; In Search of an Ethics for a Technological Age, University of Chicago Press

Steffen et.al., 2018, Trajectories in the Earth System in the Anthropocene, Proceedings of the National Academy of Sciences, http://macroecointern.dk/pdf-reprints/Steffen_PNAS_2018.pdf

 

By:

Donald A. Brown

Scholar in Residence and Professor

Widener University Commonwealth Law School

Harrisburg, Pa.

dabrown57@gmail.com

 

At the UN Climate Talks, Thinking About Equity May Require Understanding the Conditions of Mutual Trust

Editor’s Note: The following entry is by guest blogger, Dr. Idil Boran, from  York University in Toronto, Canada. Dr. Boran has previously reported on equity and justice issues that arose in the recently concluded Bonn intercessional meetings of climate negotiations under the UNFCCC. This latest report was made at the conclusion of these negotiations during which almost no progress was made in defining equity under UNFCCC by the Ad Hoc Working Group on Durban Platform For  Enhanced Action (ADP), a mechanism under the UNFCCC that seeks to achieve a adequate global climate agreement, despite a growing consensus among most observers of the UNFCCC negotiations that nations need to align their emissions reductions commitments to levels required of them by equity and justice if the world is going to prevent extremely dangerous climate change.

climate justicenow

At the UN Climate Talks, Thinking About Equity May Require Understanding the Conditions of Mutual Trust

The UN Climate Conference held in Bonn, Germany, June 4-15, 2014, concluded in a generally positive tone. Much work has been done before COP 20 in Lima, where negotiators are expected to produce a fully written draft of the new agreement.

International talks on climate change have taken many twists and turns since the UNFCCC came into effect. In the current round of negotiations important shifts are occurring. As explained in a previous post, the new platform of negotiations favors the concept of global participation, where every nation is expected to do its part in some capacity. This is to replace the idea of common but differentiated responsibilities, which was the guiding principle of the negotiations in the Kyoto era. This principle was specially opted to capture a sense of equity within a binding global treaty. The current focus on global participation is to facilitate agreement and induce greater participation. But does this shift imply that the new agreement will have to make a compromise on the issue of equity?

Moral and political philosophers tend to think about equity in substantive terms, as claims about how to apportion the burdens and the benefits as part of a collective venture. The thinking is usually that of identifying an appropriate criterion of equity (a guiding principle) and then articulating an allocation of responsibilities from this criterion.

This way of thinking can be applied to many topics arising within the Framework Convention. Take, for example, the new issue at the heart of the multilateral negotiations: the Warsaw Mechanism on Loss and Damage associated with climate impacts in developing countries that are particularly vulnerable to the adverse effects of climate change. When the issue of loss and damage is raised, a standard approach that comes to mind is that of prescribing an allocation of the costs associated with loss and damage (human, economic, as well as non-economic costs) by a criterion of equity.

For example, historical accountability provides a morally powerful criterion. This is the idea that those who are historically responsible for the problem of climate change should provide the resources to deal with loss and damage. Ability to pay provides another criterion. Here the idea is that developed countries should take up the costs, simply because they are more wealthy. These arguments have been made for mitigation efforts, and they can also be made as new issues arise, such as the issue of an international mechanism on loss and damage.

But the reality is far more complex. However neat these substantive arguments are, they do not capture the layers of discussions that actually take place. In fact, most of the discussions regarding the Warsaw Mechanism, at this point in time, are not over substantive questions. They are focused on deciding on the rules and procedures, and the composition of the Executive Committee, whose mandate will be to develop the details of the mechanism. But the questions that arise at this procedural level are no less interesting. As discussions continue, developing countries who feel threatened by the effects of climate change will press for greater representation within the Committee, and developed countries, such as the United States and the E.U. will press more on the importance of securing the right team of experts regardless of country representation.

But why are developing countries vulnerable to the effects of climate change are pressing for more seats on the Committee? Clearly, when it comes to decisions made by the Executive Committee, they worry that their interests will not be taken into account, unless they secure greater representation.

So, it looks like there is a problem of trust that needs to be addressed at the heart of the deliberations. Within rightful conditions of collective decision-making, equitable terms of cooperation can be captured and agreed upon. And this is exactly what the new round of negotiations aims to achieve by 2015, with more flexibility conferred to countries in making their contributions to the climate effort. What remains to be done, then, is to work on the conditions that will promote trust between parties.

More than neat arguments from first principles, this may require specially talented people, with strong diplomatic skills working on the ground, who can foster a sense of building bridges, and a feel for working together on a global problem. This will also require the building of strong international institutions that put greater emphasis than ever on transparency, accountability, and governance.

At this juncture then, if equity is the concern, there are reasons to invest in understanding what, if at all, can generate more trust between parties at the UNFCCC. Figuring out what it takes to secure mutual trust is more an art than strict rational argumentation. It has something to do with creating a welcoming and inclusive atmosphere, as opposed to a hostile one where all hold their cards close to their chests. It therefore makes sense for academic researchers interested in the ethical, political, and legal aspects of climate talks to tune in to these dynamics.

As for the institutional structure of the UNFCCC, adopting the right institutional rules and procedures can help in fostering mutual trust. That’s why the new multilateral assessment and review processes under development are of special significance. So is the effort to agree on a common metric on emissions reduction, so to allow all parties to pitch in their contributions in a coherent way, and work together toward ratcheting them up in the future. This may not be a magic solution to the climate problem, but it can set the foundations of cooperation that’s not only equitable but durable too. If successful, it can set an important precedent.

That’s why all eyes will be on Lima in December 2014…

By: 

Dr. Idil Boran. Associate Professor &

Director of the Certificate Program in Practical Ethics

Department of Philosophy, Faculty of Liberal Arts and Professional Studies

Core Faculty Member

Institute for Research and Innovation in Sustainability (IRIS)

York University, Toronto Ontario

Canada